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LIQUID CRYSTALS, 1992, VOL. 12, No. 3,477-503 

Branchings of the fully symmetrical solution of the 
molecular field equation in liquid crystals 

by P. P. SHTIFANYUK* and A. N. SHRAMKOV 
Institute for Single Crystals, 60 Lenin Avenue, 

310001 Kharkov, Ukraine 

(Received 7 June 1991; accepted 23 November 1991) 

A general scheme has been constructed to study the branching of the fully 
symmetrical solution of the molecular field equation in the case when the molecular 
coordinates parametrise a certain group Q. A relationship is established between 
these branchings and the phase transitions. Branchings corresponding to the 
formation of orientationally ordered and spatially modulated structures are studied 
explicitly. Special attention is paid to phase transitions from the isotropic liquid to 
nematic and cholesteric phases. Characteristics of these transitions (for example 
Curie temperature, order of transition, and symmetry of the phase formed) have 
been related to the intermolecular potential energy and the pair correlation 
function. 

1. Introduction 
Application of equilibrium statistical mechanics to molecular systems results in 

non-linear equations for the distribution functions or order parameters. As a rule, these 
equations are solved numerically, and it is necessary to specify the form of the 
intermolecular interaction potential. Thus, the results obtained do not possess 
sufficient generality. At the same time there are a number of papers where the 
corresponding equations have been studied by analytical methods. Several papers 
[ 1-93 have considered systems which consist of particles having three dimensional real 
space !R3 or two dimensional sphere Sz as its single particle configurational space. 
Orientational ordering of molecules due to their multipole-multipole interaction has 
been considered [1&12]. In [13] the coordinates of molecules were parametrized by 
SO,; it was assumed, however, that the molecule possessed D, symmetry. A general 
feature of all of these studies was the application of the branching theory of non-linear 
equations for description of phase transitions in the molecular systems. 

A real molecule has as its configurational space not less than the euclidean group 
SO, A T,. This led us to consider the general case, when the molecular coordinates 
parameterize a certain group Q. In $ 2, the corresponding molecular field equations are 
derived and a relationship is obtained, which determines the bifurcation points of this 
equation. A scheme is presented for the construction of infinitesimal non-zero solutions 
emerging at these points. In $ 3  this scheme is applied to the case 
Q = SO,. In particular, the nematic-isotropic transition is considered. Section 4 is 
dedicated to the case Q = SO, A T,. Infinitesimal solutions of the molecular field 
equation are constructed and studied, which correspond to one dimensional spatially 
modulated structures. In 0 5 a relationship is established between the bifurcational 
approach to the description of phase transitions proposed in the previous sections and 
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478 P. P. Shtifanyuk and A. N. Shramkov 

the Landau-Ginsburg phenomenological theory. Factors are discussed which are 
responsible for the differences between the results of the present work and the results 
presented in [14]. 

2. Bifurcations of the molecular field equation 
2.1. The molecular Jield equation 

Let molecules with coordinates q1 and q2 interact with the potential energy 
U(q; 'q2).  Such a form of the potential energy follows from the assumption of the two 
particle interaction energy being invariant with respect to the left handed shift of both 
particles upon the group Q. 

In the space of complex-valued quadratically integrable functions upon the group 
Q we define the scalar product: 

(*, *> = J&rn*(q). 

Here Idq.. . denotes invariant integration. In the case when the particle movement is 
restricted, integration is carried out only over the region accessible to the particle. Thus, 
for Q = SO, (1,l)  = 8n2, and for Q = SO, A T, (1,l) = 87c2 * V, where Vis the physical 
volume of the system. We now introduce a single particle distribution function f ( q ) ,  

( L f  >= 1. (2.1.1) 

The fully symmetrical state of the system is described by the single particle function 
f=  f o  = 1/( 1,i) and the pair correlation function g = g(q; 'q2) ,  which is invariant with 
respect to the left handed shift of both molecules upon the group Q. Restricting 
ourselves to the mean field approximation, we neglect the dependence of the pair 
correlation function on the single particle function f and the temperature. In other 
words, it is assumed that in the temperature region of interest the pair correlation 
function does not differ significantly from the pair correlation function of the fully 
symmetric state. We define the operator by 

where 

(2.1.2) 

(2.1.3) 

We assume that the molecules are identical, i.e. the operator k is hermitian. The free 
energy of the system is expressed as 

W)= N 2 / 2 ( f ;  k f )  + N T ( J  1nf) +POW), (2.1.4) 

where N is the number of the particles. Differentiating the functional (2.1.4) under the 
condition of (2.1.1), we find the mean field equation 

where B= NIT. It is convenient to transform to the function $ = f -  1/( 1,l); then 

(2.1.5) 
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Molecular field theory of liquid crystals 479 

The non-linear operator a acts in the space offunctions cp(q), satisfying the relationship 
(1, cp) = 0, which is a consequence of the relationship (2.1.1). The fully symmetrical state 
is described by the function + = 0. Such a solution exists for all values of P. 

2.2. Bijiurcation points and injinitesimal solutions of the molecular jield equation 
According to the implicit function theorem [l5] a necessary condition for the point 

= P* to be the bifurcation point of equation (2.1.5) is the existence of unit eigenvalues 
of the operator a’(j?, 0) (the Fresche derivative of the operator A^ at the point $ = 0). If 
the corresponding eigenvalue has an odd multiplicity, the point P = P* is the true 
bifurcation point. In the opposite case additional study is necessary. The Fresche 
derivative of the operator a at the point $ = O  is a linear operator A ’̂@, 0) 

A’(P, O)h(q) = -PI( 1 , 1  )Rh(q). 
We look for the solution emerging at the point B=P* in the parametrical form 

p=p* + p 1 E + P Z E 2 . .  . , * = * l E + * 2 E 2  +. . . , E >o. (2.2.1) 

Substituting these expansions into equation (2.1.6), we find 

1 ”  * 1 ---Kw1, -A*  (2.2.2) 

1 ”  *,=FK*,+ GP(*1,. . .&-l; P 1 , .  . . , P p - l ) ,  (2.2.3) 

where 1* = - B*/( 1, l), p = 2, 3, 4,. . . , G,  is the function on the group Q, depending 
upon q via the functions t,h1(q),. . . , $,,(q). . . . In particular, 

(2.2.4) 

1 
-$<I,  1>*1(1,*t>+-P*(L *lK62). (2.2.5) 

Let (el(&. . . , e,,(q)} be the complete orthogonal set of eigenfunctions of the operator K, 
corresponding to the eigenvalue A*. We normalize them by the condition 

(1 ,  1 )  

<ei, ej> = l l e l l ~ i ~  
Equation (2.2.2) has the function 

(1/1(4) = 1 aiei(q) (2.2.6) 

as its solution. Equation (2.2.3) may be considered as a linear equation on the function 
I),,. The condition for its solubility is 

( e ,  G P )  =0, p =  1, .  . . , n. (2.2.7) 

i 

Let us introduce a projection operator pi. 

(2.2.8) 
1 

pih(q)=-(ei, h)ei(q). 
llell 
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480 P. P. Shtifanyuk and A. N. Shramkov 

The solution of equation (2.2.3) may be expressed as 
+p = I? G, + xclP)ei(4), 

i 

where 

I?= ( l---K+CPi ;* - ) - I  . 

(2.2.9) 

(2.2.10) 

Factors ai and cIp) are determined by substitution of equations (2.2.6) and (2.2.9) into the 
condition (2.2.7). In particular, assuming p = 3, we find 

(2.2.1 1) 

If (ei,ej,ek)=O for all sets ( i , j , k )  this equation is not sufficient to determine the 
infinitesimal non-zero solution. In fact, in this case 

*1 = O ,  (2.2.12) 
or =o. (2.2.1 3) 

Let us consider the case (2.2.12) in detail. Assuming that $1 =. . . = I , $ p -  = O  and 

*p=-K* A* P' (2.2.14) 

* p +  1 = p 4 j p +  1 -PlK*p (2.2.15) 

The compatibility condition of equations (2.2.14) and (2.2.15) is t+bp = 0. Thus, under the 
assumption (2.2.12), we find by induction $, = 0 for any p .  Now we consider the case 
(2.2.13). Substituting in equation (2.2.7) p =  3 and accounting for (2.2.13), we find 
equations, determining the factors a, in this case 

using the expansions (2.2.1), we find from equation (2.1.5). 
1 

1 "  

(1  -;b* 1 aiajak(e,, eiejek) =O. (2.2.16) 
6 i,j ,k 

Let us discuss the significance of the symbol (e,, *1kI,$2). According to equation (2.2.9) 

$ 2  = ffG, + xc12)ei(q). 

For $l there is an expression (2.2.6). Earlier we had assumed that (ei,ejek) = O  for all 
sets (i,j, k). Consequently 

(el, +1R+2) =xai<et, eiRR~2(+ 130)). (2.2.17) 

Substituting this equation into equation (2.1.16), we find an equation to determine (ai} 

i 

(2.2.18) 
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Molecular field theory of liquid crystals 48 1 

In the same way we could consider the case = f i2 = 0, etc. It would correspond to 
some additional conditions laid upon the functions ei(q) and, consequently, upon the 
intermolecular potential. 

At high temperatures the global minimum of the functional (2.1.4) is realized by the 
functionf=f,= l /( l ,  l),  which corresponds to $=O. At small $ 

Let T* = N/P* = - I * N / (  1, l), where I* is the minimal eigenvalue of the operator K. 
Than at T = T* the fully symmetrical phase becomes absolutely unstable. The order 
parameter describing the corresponding phase transition is a linear functional S($). We 
have considered two essentially different cases of branching: fil = O  and fil #O. The 
signs of PI and f i2 determine the sign of the temperature change on the corresponding 
branch. It is clear, that the case fil < O  and the case p1 =0, fi2 t O  should be associated 
with a first order phase transition. The case = 0, p2 > 0 corresponds to a second order 
phase transition. 

Strictly speaking, we should compare the free energies on different branches at an 
arbitrary distance from the branching point. In this case the branch on which the global 
free energy minimum is realized may be found to contain no small solution appearing 
at the point p=fl*. 

3. Orientational ordering 
3.1. General consideration 

Let Q = SO3. The problem of this kind arises in the description of the orientational 
ordering after averaging over translational degrees of freedom using a spherically 
symmetrical correlation function. With that, q = SZ is a rotation transforming the 
laboratory system of coordinates into the molecular frame. We specify this rotation, 
measuring Euler angles (a, fi, y )  to the scheme A of [16]. In this case the kernel (2.1.3) of 
the integral transformation (2.1.2) is the function 

(3.1.1) 

with KL,, = KL.,. Here and elsewhere the summation limits over 1 are from zero to 
infinity, and over n, m, m' (and other indexes having the sense of orbital momentum 
projections) from - 1 to + 1. All indexes are integer. In a similar way we expand $(a) 

+(Q) = C $!nm*%nm,(Q), (3.1.2) 
1,m.m' 

with $go = 0. Using the orthogonality of the Wigner rotation matrices, we find 

K$(SZ) = 8n2/(21 + 1) c KL., ~$!,,,9!,,(Q). (3.1.3) 
I ,  m, m' n 

Thus, the operator K has invariant subspaces H('.") from vectors of the form 

h!t(n) = Chfim9!m(a)* 
m 

Study of the operator K spectral properties reduces to the study of spectral properties 
of the hermitian matrices K' with dimensions (21+ 1) x (21 + 1) and matrix elements 
8n2/(21 + l)KLmt. Denoting the minimum characteristic value of this matrix by I*, we 
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482 P. P. Shtifanyuk and A. N. Shramkov 

assume it to be simple. (This assumption is not satisfied under some special restrictions 
upon the matrix elements KL,..) According to equation (3.1.3), I* is a (21+ 1) times 
degenerate eigenvalue of the operator K. The corresponding eigenvectors e!,(a), In1 < I ,  
have the form 

e!,(a) = Cebmg!,rn(fi)* (3.1.4) 

The normalization condition allows the phase of the e!,(R) to be chosen arbitrarily. To 
eliminate this we demand 

m 

~ 

eb(Q) = eb(Q), ebo 2 0. (3.1.5) 

Using these relationships and the properties of the Wigner functions we find 
~ 

e!,(O) = (- 1)" ef(a). (3.1.6) 

in the form (2.2.6). Then equation (2.2.1 1) assumes Let us represent the function 
the form 

(3.1.7) 

where 

and CElj is the Clebsch-Gordan coefficient, [16]. Equation (2.2.18) assumes the form 

(3.1.8) 

where 

T=47c211e112fl*(1 +P*K;,)-', EL=E$-Ef ,  

x cfiL,,- j,ebjebi 

The values EL and T are functionals of the function K .  The function being real, 
certain conditions are imposed on the factors a,. Using equation (3.1.6), we find 
~ ~ = ( - l y a - . ~  Let a set {ai}  be a solution of equation (3.1.7) or equation (3.1.8). The 
mean field equation being invariant with respect to the left hand shift over the group 
SO, implies that the set {a:} defined as 

- 

a: =xg;i(c)ak, (3.1.9) 
k 

where c is an arbitrary element of the group SO,, is also a solution. 
Now we consider the case 1 = 2 in detail. This case corresponds to nematic ordering. 

Five constants a, (n=O,  1, +2) form an irreducible spherical tensor of the second 
rank. By rotating the laboratory frame, i.e. using transformation (3.1.9), two of its 
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Molecular jield theory of liquid crystals 483 

components a, and a_, may be reduced to zero. This well-known fact was used for 
example in [17]. In Appendix A its simple proof is presented, based on the relationship 
between irreducible spherical tensors and Cartesian tensors. Thus, in a certain 
laboratory frame 

a_,=a, ,  a-,=a,=O, a,=&. (3.1.10) 

Substituting this result into equation (3.1.7) with B2#0, we find the only non-zero 
solution 

a,= &“di0, at’= J7/ J2By ‘/31//3*. (3.1.11) 

Using transformation (3.2.9), it is possible to obtain, starting from the solution 
(3.1.11), the two parameter family of solutions. All of the solutions of this family are 
uniaxial, i.e. they possess symmetry axes of infinite order. Thus, at B2 = 0 near T = T* a 
first order nematic-isotropic phase transition takes place. If B2 = 0, from equations 
(3.1.7) and (2.1.10) we find pl=O. In this case coefficients a, are determined from 
equation (3.1.8). Substituting equation (3.1.10) into (3.1.8), we find 

(3.1.12) 

where 

2 22 + C F  2 L4CE 221 + 2T 

In these sums L runs over the values 0, 1,2, 3,4. To calculate X ,  I: X’, Y’ we need to 
know the matrices K L  (L=O, 1, 2, 3, 4). 

If (X’- X)/(Y-  Y’) >O,  the system of equations (3.1.12) has three non-zero solutions 

x-x  
(a) a;=p2 [ X S Y  (;:;)I ~ - l ,  b2I2  =sue; 
(b) ao=O, la2I2=P2/Y’; 

(4 b O 1 2  = B2/X, a2 = 0. 

In the case when (X’ - X ) / (  Y- Y’) < 0, there are only two solutions (b) and (c). Solutions 
(a) and (b) generate three parameter families of solutions, while solution (c) gives a two 
parameter family. Thus, there always exist both uniaxial (c) and biaxial solutions. To 
find out which of the three branches corresponds to the actual orientational ordering, 
we have to analyse equations (2.2.7) with p > 3, and to calculate values of the functional 
(2.1.4) on all three branches, finding its global minimum. Each of the solutions (a), (b), (c) 
depends in an intricate way upon the function K ,  more precisely, upon the K’ matrices 
with 1 = 0,1,2,3,4. The order of the corresponding phase transition is determined by 
the sign of p2, which, in turn, is determined from the condition that a; and are 
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484 P. P. Shtifanyuk and A. N. Shramkov 

positive. This implies, that the question, concerning the symmetry of the phase formed 
at a given point on the phase diagram (i.e. at B ,  =0) and the order of the transition 
should be solved for each specific molecular system. 

Based upon the results of our study, we can assume the shape of the phase diagram 
in the B,-T plane. Two variants are possible, shown in the figures 1 (a) and (b). We 
distinguish two phases N +  and N-, which are phenomenologically indiscernible and 
are determined within the choice of the molecular coordinate system. Both of these 
phases are uniaxial. In the phase N +  the 2 axis of the molecular frame is at the average 
angle of 0 < p < arccos (1/J3) to the z axis of the laboratory frame. For the phase N-  
this angle is in the limit n 2 p 2 arccos (1/J3). The diagram presented in the figure 1 (a), 
has been widely discussed [13,14,17,18]. The possibility reflected in figure 1 (b) was 
noted in [18]. In our approach, this corresponds to the solution and analysis of the 
equations (2.2.7) and (2.2.9) up to p = 6  in the same way as was done for p = 3 .  In 
addition to this, a special situation is possible for some molecular systems when X = X ,  
and solution (a) vanishes, i.e. the topology of the phase diagram is described by figure 
1 (b). As we have already noted by the isolated point B ,  = 0 it is possible to realize both 
continuous and first order phase transitions, depending upon the constituent molecules 
and external conditions. We have not found, however, any discussion of the second 
possibility in the literature. 

The isotropic liquid-nematic phase transition has been related to the bifurcation of 
the molecular field equation, taking place at the maximum temperature T = T* = p * / N .  
There also exist bifurcations occurring at a lower temperature. The corresponding non- 
zero solutions also possess the symmetry of a nematic. Thus, on decreasing temperature 
a first order phase transition is possible between the two nematic phases without 
symmetry changes. The theoretical study of such a situation requires calculation of the 
free energy functional on all the nematic solutions far enough from the bifurcation 
points. 

Studying matrices K' with 1> 2, it is possible to construct small solutions of the mean 
field equation, which correspond to other orientationally ordered structures. In 
particular, putting 1 =4, we obtain a so-called hedgehog ordering, [19]. The corre- 
sponding phase is of cubic symmetry. It is usually assumed that in real molecular 
systems orientational ordering is described by the case with 1 = 2. We should note that 

1 '  IT 

I 8 

0 B2 

(4 (4 
Figure 1. The phase diagram in the B,-T plane. I, isotropic liquid, N'; N-, uniaxial nematic; 

B, biaxial nematic. In the N +  phase the z axis of the molecular frame is at the average angle 
of O < b <  arccos (1/J3) to the z axis of the laboratory frame. For the phase N- this angle 
has the limits n>,!?>arccos (1143). 
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Molecular field theory of liquid crystals 485 

in this situation the existence of the solution with 1 = 4  is also important because there is 
the possibility of a first order phase transition, corresponding to a jump from the 
branch 1 = 2 to the branch 1 = 4. It is natural to expect the optical properties of the cubic 
phase (1=4) to be similar to. those of the isotropic liquid. Consequently, such a phase 
transition could be easily mistaken experimentally for reentrant polymorphism. 

3.2. Orientational ordering of molecules possessing point group symmetry 
According to the general scheme described in 9 3.1, the study of the orientational 

ordering in a system of mesogenic molecules requires knowledge of the spectral 
properties of the matrix K'. In particular, putting 1 =2, we obtain a 5 x 5 matrix. 
However, if the molecule possesses a point group symmetry H, the problem is 
simplified. Let us consider the case when H is the intrinsic group of the symmetry, i.e. 
H c SO,. In other words 

K(R; 'Q2) = K((Qih1)- 'Qzh,), 

when h, h,, h2eH; R, R,, Q 2 ~ S 0 3 .  Thus, 
$(a) = $(Qh), 

(3.2.1) 1 $(a)= jadhlL(Rh)/ j H dh, 

K(R)= [ i h K ( n h ) /  [:h= [ ihK(hR)  / { H dh, . . . . 

in the case, when H is a finite group, integration should be substituted by summation. 
Using equation (3.1.2), we obtain from equation (3.2.1) 

(3.2.2) 

Among the functions A;,,,,, may be linearly dependent ones (in particular, some of these 
functions may be reduced to zero). A molecule (considered as a classical object) can 
possess one of the following intrinsic symmetry groups C,, C,, D,, T, 0, Y (see for 
example [20]). We choose the z axis of the molecular frame along the symmetry axis of 
the highest order. According to equation (3.2.2) we find 

(3.2.3) 

we are interested in the case 1 =2. From these equations it is seen that at n> 3 the matrix 
has only one non-multiple non-zero eigenvalue, 8n2/5Kio. The corresponding 
eigenvectors of the operator k are e,2(R) = 9i0(R), n = 0, rfr 1, rfr 2. We recall that C, c T, 
C, c D,, C4 c 0, C5 c Y and so, in the approximation considered molecules possessing 
symmetry groups W=T, 0, Y, C,, D, ( n 2 3 )  behave as uniaxial objects. Turning to 

} A 6 m * ( Q ,  C,) = %no(Q)dm,,, 

ALJQ C) = 9L,np(Q)dm*np, P = 0, & 1, * . . ; 
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486 P. P. Shtifanyuk and A. N. Shramkov 

equation (3.1.7), we find: B,  = -(8n2)2,/2/10/J7 and so in these cases the uniaxial 
nematic phase Ni is formed as a result of orientational ordering. The case H = C, or 
H=D,  appears to be non-trivial; if H = C 2 ,  we have to deal with the matrix 

K;-2 G o  G 2  Y I [ KI-2 G o  KI2 

KC,-, K?,, K?,, 

with Kim.= K~r,=K?,j-, .  The study of its spectral properties in general form is 
rather a difficult problem. 

After the necessary computations we obtain, for the case H = D,, the relationships 
presented in [13]. In particular, the minimum characteristic value of the matrix K’ is 

A* = 4n2/5(K&, + 2K;Z - J[(K;O - 2Kf# + 8(KgZ)’]). (3.2.4) 

The corresponding eigenvectors of the operator R are 

e;(Q) = ,/2K;,9~0(R) + 1/2/J2(2Kf2 - K:o 

(3.2.5) 

This expression may not be used when K i m  = K$o&,oi$,,,o; this case has already been 
considered. 

The function B, for a system of molecules possessing symmetry D, assumes the 
form 

B,  = (87~~)~,/2/10/J7e$,(6(e~,)~ - (ei0)’). (3.2.6) 

Mulder [ 131 considered the orientational ordering of molecules possessing three 
mutually orthogonal planes of symmetry. From the presence of this symmetry, 
conditions on the elements KL,, were derived, and it was assumed that inversion of the 
molecular frame led to the multiplication of KL,. by (- 1)’. This seems, however, not 
quite correct. These remarks do not raise any doubt about the concrete results of [13], 
because to obtain them it is sufficient to assume that the molecules have an intrinsic 
symmetry group 9,. Assuming the molecule to possess three mutually orthogonal 
planes of symmetry implies that all the elements of symmetry belong to 9,. 

3.3. Orientational ordering in the system of quadrupole moments possessing symmetry 9, 
The method of bifurcation analysis of the mean field equation is oriented towards 

using the pseudo-potential U(Q; lQ,), which reflects the structure of the constituent 
molecules in detail. Thus, the question of adequate parametrization of the inter- 
molecular interaction becomes very important. As a basis for this parametrization we 
take the method of effective pair interactions (see [21,22]). A molecule is represented by 
a distribution p(r )  of the force centres, interacting with the force centres of other 
molecules according to a q ( r )  law. The function p(r)  is defined in the molecular frame. 
The potential energy of interaction between the ith and jth molecule is calculated using 
the additive scheme 

W,j) = drip(rJ drjp(rjMrij1; s s  
the sense of this definition is clear from figure 2. Let us consider a system of molecules 
possessing the symmetry 9,. Assuming the mean intermolecular distance to be 
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Molecular Jield theory of liquid crystals 487 

sufficiently large and putting q(r) = c6/r6, c6 c 0 (which corresponds to a dispersion 
attraction), it is possible to express the coefficients Kim, using the quadrupole moments 
of density 

(3.3.1) 

where the quadrupole moment is defined by the relationship (3.3.4), and the effective 
interaction constant y <O. The calculations are presented explicitly in Appendix B. 
A similar parametrization of the intermolecular interaction potential energy was used 
in [23 ] .  

Assuming R,, ZO, we can introduce parameters o = Rzo and a = Rz2/RzO; the 
parameter a characterises the biaxiality of the molecule. Using equations (3.2.4) and 
(3.2.5), we find 

A* = -&21ylo2(1+2u2), (3.3.2) 

i 2 
Kmmp = Y( - 1)"R2 -mR2m., 
R2, = R2-1 =O, R22 = R2-2, 

e,"(a) = - J21ylo2agko(a) - J2(y (02a2(gL2(a)  + 9: - 2(i2)). (3.3.3) 

When a = 0, the system consists of uniaxial molecules, and equations (3.2.5) and (3.3.3) 
are not applicable in this case. The eigenvectors e are defined to a constant factor and so 
in place of equation (3.3.3) we may assume 

e." = g.",,(a) + a(9,f2(Q) + 9; - 2(Q)). (3.3.4) 

This expression may also be used when a=O. The eigenvector from equation (3.3.4) 
satisfies the condition (3.1.5). Using equations (3.2.5) and (3.3.4), we find 

B2 = J2/J7/10(8712)2(6a2 - 1). (3.3.5) 

In figures 3(a)-(d) possible variants of phase diagrams in the plane a-v(w21yl) are 
shown. The parabola T/(w21yI) = 0.2( 1 + a2), drawn as a dash4otted line, defines 
existence limits of the supercooled liquid. The line of equilibrium nematic-isotropic 
phase transition is not shown. 

We will model the molecule possessing symmetry D2 by a parallelepiped uniformly 
filled by force centres. Let us put the origin of the molecular frame at the centre of the 
parallelepiped; the axes are directed along the edges: x along a, y along b, z along c. As a 
result of calculations presented in Appendix B, we find 

R - *J6 , /2 / , /3 (2c2  - 
'O- 96 

abc 
22-  96 

R - --,/6(a2 - b2). 

a2 - b2), 

Figure 2. Model arrangement for the interacting molecules. The molecular frame is denoted by 
m.s.c. 
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488 P. P. Shtifanyuk and A. N. Shramkov 

The relationship B,  = O  implies that at least one of the following three relationships 
should be fulfilled 

a' + b2 = 2c2, bZ + cz = 2a2, cz + a' = 2b2. 
The phase diagram is presented in figure 4, using ( = (b/c)2 and q =(a/c), as variables 
(for T < T*); the solid dense lines describe the set of points (q, () for which B,  = 0. 

1 
I 

0 

-1 
I 

/ la N' // 

\ 

\ 
1 " \  

-1, 
A 

0 

-1 
JF 

p j i T W  T 

\ 
\ 

(4 (d  1 
Figure 3. The phase diagrams in the plane a - T / ( ~ ~ l y l ) .  The parabola T/(oZlyl)=0.2(1 +2aZ), 

drawn as a dashclotted line, defines the existence limits of the supercooled liquid. The line 
of the equilibrium nematic-isotropic phase transition is not shown. 

b 

0 05 1 2 rl 
Figure 4. The phase diagram, using (=(b /#  and q = (a/c)' as variables (for T < T*). The solid 

dense lines describe the set of points (q, l )  for which B ,  =O. 
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4. Perturbation theory and modulated structures 

Let Q=S03AT3; the elements of this group are (r,R), where reT3,ReS03. The 
4.1. General consideration 

operator is now determined by the relationship 

where r12=r2-rl; here and subsequently we denote by the symbol i the angular 
coordinates (0, q) of the vector r; we assume by definition @&) = 9!,o(0, q, 0). Such a 
form of the function K is a result of the invariance of the product q; 'q2 with respect to 
the left hand shift of the elements q1 and q2 on a euclidean group, reflecting the choice of 
the laboratory frame being arbitrary. Expansions of the form (4.1.1) are usually used in 
molecular physics to present the pair interaction of asymmetric molecules (see, for 
example [23]). Under the assumption made in Q 2.1, the symmetry of the function K is 
the same as the symmetry of the pair potential. The operator R may be presented in the 
form = R(0) + K,, with the operator K(0) being an integral transformation with the 
kernel K(0) = jdrK(r, a,, R2). In Q 3 we introduced eigenfunctions of such an operator, 
defined on SO3. Each eigenvalue 1' is (21 + 1) times degenerate in the space of these 
functions. Now the operator K(0) is considered effective in the space of functions 
defined on all the euclidean group, with degeneration multiplicity of the eigenvalue 1' 
turning to be infinite; the corresponding eigenvector is 

e(r, a) = c q!,(r)e!,(Q), (4.1.2) 

where q!,(r) is an arbitrary function. Splitting of the eigenvalue 1' in a first 
approximation will be defined by the secular equation (see, for example [24]). In other 
words, we should look for eigenvectors corresponding to the minimum eigenvalue of 
the operator in the form (4.1.2), minimizing the form ( e ,  g e )  at a fixed value of ( e ,  e ) .  

e:,.(r,Q)=exp(ikr)e!,(Q)(IIeII Y)-l/ ' ,  (4.1.3) 

where 1 is fixed, n = 0 , .  .., +1, k is an arbitrary vector from s3. Thus, 
(eL,n, e:,,,,) = 8kk, dnn. Using equations (4.1.1), (4.1.31, (3.1.4) and (3.1.6), we find 

n 

In the space of vectors e(r,Q) we introduce a basis 

where 

K l i , ( k )  = 4niL dr r KmmF(r) jL(kr), s 
(4.1.4) 
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490 P. P. Shtifanyuk and A. N. Shramkov 

The matrix composed from the elements from equation (4.1.4), is subdivided into 
blocks located along the diagonal, which are labelled with the index k; the position of 
an element inside the block is defined by two indexes nl, n2 = 0, k 1,. . . , & 1. The 
dimensions of the block are (21 + 1) x (21 + 1). Let the vector k, be parallel to the 
laboratory frame. The block where k=  ko is diagonal; it has (21+ 1) eigenvalues 

(4.1.5) 

with eigenvectors e&n(r, a). 
Using the properties of the Wigner rotation matrices and Clebsch-Gordan 

coefficients, we can show that blocks with k = k, and k = k = wk,, WESO,, are related 
by the unitary transformation representing rotation of the laboratory frame 

<eLo,n,geio,m) = C ~ ~ , n ( w ) < e : , , n , K e : , , m , ) ~ ~ m , ( w -  I). 
n‘,m’ 

Hence their eigenvalues are the same. Eigenvectors of the block with k = k’ have the 
form exp (ikr)ek(w- ‘fz). 

We have to find the minimum A!,(k) by variation of k and n. Such a study should lead 
us to determine k*, n*, corresponding to the minimum value i l * = & ( k * ) .  The 
temperature T* = - A*N/87c2/V determines the existence limit of the supercooled 
isotropic liquid. The case when the absolute minimum of the function Ak(k) is at k = 0 
corresponds to non-modulated, orientational ordering. 

To go on with our study we have to specify the functions K(r ,a1 ,Q2) .  We assume 
that this function is such that the minimum in question is realized when the k are small. 
Expanding K*IL(k) in a series over powers of k ,  we find 

A;(k) = A’ + a;k + P;k2, (4.1.6) 

where 

In particular 

A:, = A 2  & v k + ( p  + q)k2, 

A: , = A2 T 2vk + p k 2 ,  

A! = 1’ + (p + Qq)k2, 

where 

(4.1.7) 

?= 
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Molecular jield theory of liquid crystals 49 1 

To use these formulae, we require that 

(P+V)>O, P>O, (P+$V)>O. (4.1.8) 

If these conditions are not fulfilled, one of the functions from equation (4.1.7) decreases 
unboundedly with increase of k. 

If v>O, the minimum eigenvalue of the operator K to be found is 

IZ*=min {A?,(k-J, Af(k2) } ,  (4.1.9) 

where 

k2 = V I P .  

If v < 0, then 

A* = min (Af(k,), A? ,(k- ,)>, 

where 

(4.1.10) 

If v=O, then A*=A', k*=0. From equations (4.1.7), (4.1.9) and (4.1.10) we find 

(4.1.1 1) 
IZ,,(ki,)=A2-~2//i. 

From this and equation (4.1.8) it can be seen that Aq,<A:,. Thus, 

A* = 1 2  - y= /p, k* = Ivl/p, n* = 2 sgn (v). (4.1.12) 

We recall that this result was obtained by assuming that the minimum of the functions 
A,2(k) occurs at small k. 

In agreement with what was said in 52, we should look for the infinitesimal 
solution ICll(r, Q) in the form 

$&,Q)= jdffa.4 f f )  exp (ikr)e!,,,(w- 'Q), 

(kl = k*, wk, = k, WESO,; 

the vector k, is directed along the laboratory z axis. Functions a:,$) are defined from 
equation (2.2.7). Putting p=2, we can find a solution possessing hexagonal 
symmetry. Putting B1 =0,  p =  3, from equation (2.2.7) we find a solution with cubic 
symmetry. It seems that the first solution corresponds to the hexagonal structure 
mentioned in [14], and the second to the blue phase. More than one solution is possible 
for each of these symmetries. 

4.2. One dimensional modulated structures 
We now consider the simplest case, i.e. the one dimensional solution 

Q)= Aexp(ik*z)e\,(R)+Aexp( - ik*z)e:,(Q). (4.2.1) 
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492 P. P. Shtifanyuk and A. N. Shramkov 

Substituting equation (2.1) into equation (2.2.7) with p=2,3, we find 

where 
P1 =o, IA12=P211ell(P*4~2~1)-1, (4.2.2) 

the vector k, is directed along the laboratory z axis. The operator R(k) is defined by the 
relationship 

K(k)cp(Cl) = dR'cp(R') drK(r, 0, Q') exp (- ikr), s s  
and the operator f i (k )  by the relationship 

where 
1 edm) =-(eL, cp>eL(Q). II e II 

/At2 > 0, hence we determine the sign of /I2 and make assumptions about the order of the 
phase transition. When F, >O, the corresponding modulated structure may emerge as a 
result of the second order phase transition. If F,<O, we should expect the phase 
transition to be first order. Equation (4.2.2) cannot be used when F ,  = 0. In this case, 
substituting equation (4.2.1) into equation (2.2.7) and putting p = 3, we find that f12 = 0. 
To find the coefficient A, we should put p = 4 in these equations. We note, that F,  turns 
out to be zero only under certain special restrictions upon the function K .  

Let n*#O. Using the definition from equation (3.1.4) and the properties of the 
Wigner functions, equation (3.2.1) can be represented in the form 

t,bl(r, n)=Ae!,,(w-'(z)Q)+ AeL,(w- '@)a), (4.2.3) 

where o(z)ESO, is defined by the Euler angles (k*z/n*, 0,O). We shall interpret o(z) as a 
rotation transforming the laboratory frame (x, y ,  z) into a local laboratory system of 
coordinates (x', y', z'). The orientation of the molecular frame relative to the local 
laboratory frame is defined by the matrix R' = w - '(z)Q. The rotation w(z) is realized 
around the laboratory z axis. Moving along this axis, unit vectors of the local 
laboratory frame x' and y' axes describe a helix with pitch h=2nn*/k*. The right 
handed helix corresponds to m* > 0, and the left handed to m* < 0. 

It follows directly from equation (4.2.1) that t,bl(z, 0) = t,bl(z + pd, SZ) ,  where 
d = 2a/k*, p =0, f 1, f 2,. . . . Thus, the spatial period d of the one dimensional solution 
from equation (4.2.1) is, generally speaking, not the same as the helical pitch h. 

Let 1= 2. Putting n* = 0 in equation (4.2.1), we obtain a solution with the symmetry 
of a smectic A phase. However, for the smectic A phase a small additional term to the 
fully symmetrical distribution function should be of a different form. With n* # 0, 
having performed the local coordinate transformation (see equation (4.2.3)), we see that 
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Molecular field theory of liquid crystals 493 

the solution describes helicoidal structures which look locally like the biaxial nematic. 
Following the tradition (see, for example, [14]), we call the structure with n*+2 
cholesteric, and the structure with n* = If: 1 the conic phase. We note, however, that, as 
both structures are locally biaxial, these names are but conventional. 

To determine which of the five possible one dimensional structures (n* =0, & 1, If: 2) 
is realized, we have to find the minimum eigenvalue A* =A$ (k*). Assuming the one 
dimensional structure formed to be one with a long period (small k*), we see from 
equation (4.1.11) that with v>O near the point T*= -L*N/(8n2V) a right handed 
cholesteric helix is formed, and with v < 0 a left handed helix. Breaking the liquid state 
symmetry is also possible by formation of structures with n* =0, 5 1. These structures, 
however, should be ones with a short period, for which equation (4.1.12) is inapplicable. 
These conclusions about stability of the one dimensional structures are but tentative. 
The states corresponding to the one dimensional solution (equation (4.2.1)) may be not 
realized because of competition with structures of more than one dimension. 

In this reasoning, we have identified the symmetry of the modulated structure with 
the symmetry of the corresponding infinitesimal solution II/ l ( r ,  Q) of the molecular field 
equation. This identification is justified if the structure is formed as a result of a second 
order phase transition. In the case of a first order transition it is necessary, generally 
speaking, to study the symmetry of the function $ = E $ ~  + E I I / ~  + . . . . Using equations 
(2.2.9), (2.2.10) and (2.2.7) and assuming the expression (4.2.1) for t,hl, it is possible to 
construct II/,,(n 2 2) and to show that its symmetry is the same as that of the function $l. 
Putting k* = 0, we can extend this to the case of orientational ordering considered in 0 3. 

5. Phenomenological description of phase transitions and bifurcation analysis of the 
molecular field equation 

Phenomenological approaches to the isotropic liquid-spatially modulated 
structure phase transitions use the Landau-Ginzburg free energy expansion. In 
particular, Brazovski and Dmitriev [ 141, describing the isotropic liquid-cholesteric 
phase transition, used the expression 

F { Q )  = F ,  + mb{Q) + H3{QI + H4{&1)9 1 

where aa = a/&,, c1= x, y ,  z, Qas is a symmetrical real traceless second rank tensor. 
According to Appendix A, the tensor Qap is linearly expressed using an irreducible 
second rank spherical tensor Q;. With d = O  the expansion (5.1) describes the free energy 
of the nematic liquid crystal. The term H,(Q) can be expressed in the form 

where 
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494 P. P. Shtifanyuk and A. N. Shramkov 

In $2.3 the phase transition from the fully symmetrical phase was associated with 
branching of the fully symmetrical solution of the molecular field equation, which is a 
necessary condition for the extremum of the free energy functional (2.1.4). Solutions of 
equation (2.1.5) were looked for in the form of equation (2.2.1). Substitutingf=f, + + 
into equation (2.1.4) and assuming $ to be small, we find 

N N 
--T(4 6 l)Y*, $9 + $ Y ,  W(*, *3) +o((*, W). (5.3) 

The free energy of the ordered phase close to the bifurcation point p=p* can be 
calculated by substituting the initial terms of the expansion (2.2.1) into equation (5.3). 
The parametrical dependence of the free energy on temperature is 

(5.4) 

N 
T 

p=-= p* + &pl + &2p2 + . . . . 
To describe a modulated structure, we have to assume 

$1 =Cat(r)ef(a), n m=(- lYat(r). (5.5) 

Cholesteric phases correspond to the case with 1 = 2. Thus, the expansion (5.4) contains 
invariants constructed from the tensor field ai(r). Expanding a,’@) in a Taylor series, it is 
possible to obtain integro-differential invariants, which correspond to the invariants of 
the expansion (5.1). We note that in this way we will find, in addition, invariants 
containing derivatives of higher order, which are not present in equation (4.1). It is more 
convenient to carry out the corresponding expansion in Fourier space. Putting 

drai(r) exp (- ikr), s ai(k) = V-  

and using equations (4.1.1), (4.1.4) and ( 5 4 ,  we find 

The expression (5.6) is the analogue of equation (5.2). The irreducible second rank 
spherical tensor ai(k) is an analogue of the tensor Q,s,s. 

Transforming equation (5.6) to the diagonal form, we find equations (4.13, or 
(4.1.7) in the case of long period structures. An expression similar to (4.1.7) was found in 
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[14] by diagonalisation of equation (5.2). Five eigenvalues which have been found there 
are 

1 r'F2(q) = u + bq2 2 4 ,  

r3,4(q) = u + (b  + c)q2 2dq, 1 (5.7) 
z0(q)=a+(b+$c)q2. I 

The correspondence with equation (4.1.7) is established, if we put 

u = (/!?*A2 - 8n2V)/N, b = ,u, d = V ,  k = q .  

With that, 
from (/!?*A$ - 8n2 V ) / N  by the factor in the term linear in q. 

is identified with (D*A$, - 8n2V)/N,  ro with (/!?*A: - 8n2V)/N,  r3.4 differs 

It seems that in [14] there is an error; the correct calculation yields 

~ ~ ' ~ = ~ + ( b + ~ ) q ~ + d q .  

In [14] it was assumed that c > 0. The authors conclude, using equation (5.7), that the 
mode corresponding to r1 or r2 is of the lowest energy. The correction to the expression 
for r3s4 makes the requirement c > 0 unnecessary (see equation (4.1.12)). 

Expression (4.1.5) contains in itself a possibility of the existence of short period 
structures. In other words, its minimum can be reached in the region of large k,  where 
the expansion (4.1.7) is not applicable. The phenomenological account for such a 
possibility would require the introduction of additional integro-differential invariants 
to equation (5. l), containing higher-order differential derivatives. 

Thus correspondence is established between the second term in equation (5.4) and 
the term H ,  in equation (5.1). Not all of the terms in equation (5.4) have their analogies 
in equation (5.1). In fact, it is clear from equations (2.2.4), (2.2.9) and (5.5) that $,(r,Q) 
can be represented in the form 

4 

I = O  
$2 = C $;2)rnrn,(r)%nrn*(Q), 

where t,b~2,mrnr(r) are certain functions. Thus, invariants appear in equation (5.4) which 
are constructed from variables transformed by rotation of the laboratory frame over 
irreducible representations 9', 1 = 0,1,2,3,4, of the group SO,. An account of such 
terms in a phenomenological description of the nematic-isotropic phase transition has 
been partially carried out [25]. The presence of such terms can affect the order of the 
phase transition, because they are accounted for in the calculations of F ,  (see equation 
2.3)). According to 0 3.1, these terms can influence significantly the characteristics of the 
phase transition at the isolated point B ,  = 0. 

6. Summary 
In this work we have studied the branchings of the fully symmetrical solutions of the 

molecular field equation. Relationships have been established between these branch- 
ings and phase transitions from the fully symmetrical phase. Infinitesimal solutions 
were constructed, describing the emergence of orientationally ordered structures from 
the isotropic liquid. Assumptions were made about the form of the corresponding 
phase diagrams. It is shown that a phase diagram does not necessarily contain a point 
where the direct transition biaxial nematic-isotropic is possible. If such a point does 
exist, the corresponding phase transition is not necessarily continuous, as it is 
commonly assumed. It should be noted, however, that all constructions of the present 
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496 P. P. Shtifanyuk and A. N. Shramkov 

work are based upon the mean field approximation and do not allow for fluctuations. 
Additional work is needed to establish microscopic criteria determining the order of the 
phase transition. Using perturbation theory, infinitesimal solutions were obtained, 
describing the emergence of spatially modulated structures. One dimensional struc- 
tures were studied in detail. Solutions have been found corresponding to the cholesteric 
phase, the conic phase and a uniaxial modulated structure of the same symmetry as the 
smectic A phase. It is shown that for long period structures the most thermodynami- 
cally favourable are symmetry distortions of the isotropic liquid accounting for the 
formation of the cholesteric helix. 

The authors express their gratitude to Professors V. P. Seminozhenko, V. L. 
Sobolev, and I. P. Krainov for their continuous interest and support of the present 
work, and to Professor I. M. Vitebski and Dr L. N. Lisetski for valuable discussions and 
helpful suggestions. 

Appendix A 
Relationship between irreducible spherical second rank tensors and Cartesian tensors 

An irreducible spherical tensor of second rank T i ,  satisfying the condition 
T i = ( -  l ) m T i ,  can be represented in the form (see, for example [16])  

T i =  T,,, T : , =  +_(-,/2/,/3XT,,+_iT,,), T:2= 1/, /6(T,,-  T,,ki2Tx,), 

where q k  is a symmetrical second rank tensor with 

As known from linear algebra, the tensor Tk can be reduced to the diagonal form. 
Turning to equation (A l ) ,  we see, that the diagonal form corresponds to 

T;=T,, ,  T:,=O, T i ,  = (Tcx - q. 

Appendix B 
Application of the effective pair interactions method to calculations of the intermolecular 

potential 
In [21,22] the intermolecular potential energy is presented in the form 

where rl2 is the radius vector connecting the molecular frame centres of molecules 1 
and 2 fi,(,, is the set of Euler angles describing the orientation of the molecule l (2)  in the 
laboratory frame; function 0;;;" is defined by equation (4.1.1). 

s + s ' = p  

Here the molecule is considered as a set of force centres interacting with the force 
centres of other molecules according to the law q(r)  = CZnr-'". The molecule is assumed 
to be rigid and its structure is defined by the distribution density of the force centres p(r), 
specified in the molecular frame. The generalized moments 

RTi=(47~/(21+ 1))'l2 d r r ' + 2 S x m m  s 
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assure the full parametrisation of this density. In particular, 
density p(r), 

p( k) = ( 2 ~ ) -  dr exp ( - ikr)p( r), s 
is represented in the form 

~ ( k )  = C p I m ( k )  Xrn(Q, 

497 

the Fourier image of 

(B 4) 

This can be easily proved by substituting the Rayleigh plane wave expansion, 

exp(-ikr)=4nx( -i)~,(kr)~,(?)&,,,(&), 

into equation (B 5 )  and expanding the spherical Bessel function j ,  in the Taylor series. 
Explicit expressions for symbols B::!, and A:& are presented in [22]. 

The expansion (B3) is, in fact, an expansion over the dimensionless parameter 
A/R12,  where A is a characteristic molecular dimension. Hence, it is valid only for 
A<R,,. From now on it is assumed that in the system studied the average 
intermolecular distance ( R 1 2 )  > A. Let interaction of the force centres of the model 
molecules be governed by the Lennard-Jones law q(r) = C6/r6 + Clz/r l2(C6(0,  C12)O). 

II'L - u"'L II'L 
umm' - mm'(3) + umrn'(6) 

should be substituted into the expansion (B 1). 
According to Q 3.1, the pseudo-potential should be averaged with a spherically 

symmetric correlation function g(R,,). In this way the transition is realized by the 
model system having SO, as its one particle configuration space. Particles forming 
such a system, interact with the potential 

u(n;',n2)= drg(r)E(Rl,Q2, r12). (B 7) s 
Correlations in this system are not considered, and K(R, 'R,) = U ( n ;  'a2). Substitut- 
ing equations (B 1 H B  3) into (B 8)  and carrying out the integration, we obtain 

When actual calculations are made, the series has to be truncated. To a first 
approximation we may account only for the dispersion interaction, caused by the 
multipole moments R,, = RP,. In particular, in this approximation 

(B 8 )  2 
u m m '  = Y ( -  1)"R2 - mR2mn.9 

where the effective interaction constant y < 0. 
Let us place the origin of the molecular frame at the centre of a rectangular 

parallelepiped (a; b; c). Let p(r) be equal to unity inside this parallelepiped and to zero 
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498 P. P. Shtifanyuk and A. N. Shramkov 

outside. We direct the molecular frame axes along the edges of the parallelepiped. The 
Fourier image of the distribution considered is 

p(k)=(27~-~  drexp(-ikr), 

with integrating being carried out over the entire volume of the parallelepiped. 
Expanding exp ( - ikr) in a Taylor series, we obtain 

s 
p(r)=(2n)-3 dr( ...--& kr)’+ ...). 

Here only the terms of order k2 are written down explicitly. Now we present the vectors 
k and r in the cyclic basis [16]. The covariant component of the vector k is 

k,=(4~ /3 )~ ’~kY~~(E) ,  p=O,  & 1. 

Contravariant cyclic components of the vector r are expressed in terms of its Cartesian 
components x, y ,  z 

s 

r + = - (x - iy)/J2, 

r - ’  =(x+iy)/J2, 

r = z. 

The scalar product (kr) is a convolution kPrP. In this way, 

p(k)= ...--(-) 1 k 2  YIP(E)Yl,,,(l)lPP’, 
671’ 2 p , p ~  

where 

dr r V ’ .  s a; b; c )  

IPP’ = 

The product of two spherical functions is expressed as [16] 

Substituting equation (B 12) into (B 1 l), we find the function p,,(k), defined by the 
relationship (B 6) 

Using equation (B lo), we carry out the integration and obtain P‘ 

1 ~ l l = ~ - l - l -  abc 
24 

- __ (a2 - b’), 
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Comparing equation (B 13) with (B 7), we find 

Substituting into this equation the expression (B 14) for lpp' and the tabulated values of 
the Clebsch-Gordan coefficients, we find 

1 abc 
2 24 

R;, = --__ (a2 + b2 - 2c2), 

J6 abc 
R:2 =,,(a2-b2), 

R;, = R;- , =o. 

Appendix C 
Parametrisation of the orientational degrees of freedom 

Neglecting spin degrees of freedom, we regard molecules forming the system as 
classical asymmetric tops. We introduce a laboratory system of coordinates and 
molecular system of coordinates frozen into thejth molecule. We denote the coordinate 
column of an arbitrary vector A in the laboratory frame as (A)L, and in the molecular 
frame as (A)M-j for the jth molecule. 

Let R, be a vector frozen into the ith molecule and rotating with it. When the 
molecular and laboratory frames coincide, the vector R, coincides with a certain 
stationary vector R,, with that, (RO)L=(Ri)p It is clear that always 

(Ri)M - i  (C 1) 

( R J L  = Qi(Ro)v (C 2) 

(C 3) 

Orientation of the ith molecule is defined by the matrix Qi 

For an arbitrary vector A we have 

(A), - i = 0; '( A)p 

The relative orientation of the ith andjth molecules is defined by the matrix 0, such 
that 

(Rib- j = Q i J ( & ) ~ - p  (C 4) 
Knowing the matrix R,, it is possible for every vector R j  of thejth molecule defined in 
its molecular frame to construct the corresponding vector Ri of the ith molecule. From 
the relationships (C 1) and (C 2) it follows that 

(RJ, =R,T 'QJ4Rj)M - j ;  

thus, 

Rij  = nt: 'Of (C 5 )  

Let us consider how the results would change if we defined the orientation of the ith 
molecular frame relative to the new laboratory system of coordinates. Let unit vectors 
of the new laboratory frame be the result of matrix C acting upon the unit vectors of the 
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500 P. P. Shtifanyuk and A. N. Shramkov 

original laboratory frame. Then the coordinates of an arbitrary vector A in these 
systems are related by 

According to equation (C 3), the orientation of the jth molecular frame relative to the 
new laboratory frame is defined by the matrix y. such that (A)M-j= WJT1 (A)L-,,. It 
follows from equation (A 3) that 

Thus 

Expression (C 5 )  is invariant under the substitution Ri+C-'qi, Rj+C-'qj. 
Consequently, the value of Rij does, in fact, define the relative orientation of the 
molecules and does not depend upon the choice of the laboratory system of 
coordinates. 

= C- (C 6) 

(A)M - j = RJT ' C(A)L - ,,. 

wj=C-'qj. (C 7) 

The kernel (C 3) of the integral transformation (C 2) has the form 

K(Rij)  = K(R; 'Rj). (C 8) 
This function is expanded over matrix elements of irreducible unitary representations 
of the group SO, [16] 

K(Rij) = K&,,BL,@ij) 
I,m,m' 

It is assumed that the molecules in the system are identical, therefore K(Rij)= K(CIji). 
Using the relationship (C 9), we obtain 

K,,,,,,, I = K,,,!,,,. I 

In the physics of liquid crystals it is conventional to define the molecular orientation by 
parametrisation of the rotation transforming the laboratory into the molecular frame 
using Euler angles (a, p, y), counted according to the scheme A, i.e. presenting a set of 
successive rotations (see figure Cl): 

(1) rotation about OZ by an angle a (0 < a  < 271); 
(2) rotation about Yl axis by an angle p (O<p<n); 
(3) rotation about the new Z 2  = Z axis by an angle y (0 < y < 271). 

The matrix element of the irreducible representation 9k,,(R) is the Wigner rotation 
matrix g!,,,,,,(a, fl, y). 

Finally, let us consider how our construction will be changed under a transfor- 
mation to a new molecular system of coordinates, related to the same molecule. Let us 
define the new molecular frame, defining the matrix h such that for an arbitrary 
vector A 

This definition corresponds to Euler angles defining the orientation of the new 
molecular frame being counted from the molecular frame axes. Comparing equations 

(A), - = h - '( A)M. (C 10) 

- -  

(C 10) and (C 3), we find 
W M - n  =(W-'(A),. 

Thus, the matrix Rh defines the orientation of the new molecular frame relative to the 
laboratory frame. 
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(2) (3) 
Figure C1. The notations defining the three Euler angle a, f l  and y. 
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